
Combinatorial Problems in OpenAD

Jean Utke1 and Uwe Naumann2

1 Argonne National Laboratory, MCS
9700 S. Cass Ave., Argonne, IL 60439, USA

utke@mcs.anl.gov
2 RWTH Aachen University, LuFG Informatik 12

52056 Aachen, Germany
naumann@stce.rwth-aachen.de

Abstract. Computing derivatives using automatic differentiation methods en-
tails a variety of combinatorial problems. The OpenAD tool implements auto-
matic differentiation as source transformation of a program that represents a nu-
merical model. We select three combinatorial problems and discuss the solutions
implemented in OpenAD. Our intention is to explain the specific parts of the im-
plementation so that readers can easily use OpenAD to investigate and develop
their own solutions to these problems.

Keywords. automatic differentiation, combinatorial problems, OpenAD

1 Introduction

Computing derivatives of numerical models f(x) 7→ y : Rn 7→ Rm given as a computer
program P is an important but also compute-intensive task. Automatic differentiation
(AD) [1] provides the means to obtain such derivatives. OpenAD [2] implements AD
as a source transformation applied to Fortran programs for both the forward and reverse
modes. In this paper we describe the solutions to three combinatorial aspects of AD
as implemented in OpenAD. For information regarding the general use of OpenAD
please see [3]. Because OpenAD is a source transformation tool, the combinatorial
problems are solved at compile time; hence, our approach can afford costly heuristics
to approximate a good solution. Using such heuristics even with small improvements
is justified when, for instance, these improvements benefit the numerical kernel of a loop
and therefore the improvement accumulates over the runtime, realizing considerable
savings. Our intention is to explain the representation of the combinatorial problems
in OpenAD such that the reader will find it easy to implement and investigate other
solutions to these problems. The remainder of this section provides a brief overview of
the concepts of AD that are relevant to the problems in question. General information
on AD can be found in recent conference proceedings [4,5], the AD community website
[6], and the survey paper in this proceedings [7].

Automatic differentiation relies on the chain rule applied to a sequence of elemen-
tal operations. These operations are the function calls and intrinsics built into the given
programming language, such as sin, cos, or the operators + and *. Typically, right-hand-
side expressions of assignment statements form single-expression-use graphs [8], and

2 J. Utke, U. Naumann

under certain conditions a sequence of single-expression-use graphs corresponding to a
sequence of assignment statements in a given program can be flattened into a directed
acyclic graph [9]. This graph is called the computational graph G. An example is shown
in Fig. 1. The nonminimal vertices of G represent values computed as a result of a sin-

t1=x(1)+x(2)
t2=t1+sin(x(2)
y(1)=cos(t1*t2)
y(2)=-sqrt(t2)

v1 = v−1 + v0

v2 = sin(v0)
v3 = v1 + v2

v4 = v1 ∗ v3

v5 =
√

v3

v6 = cos(v4)
v7 =−v5

41c
c53

c32

c31

43c

0

21

3

54

6 7

1−

c
+

=
c

4
1

*c
4

3
3

1

6 7

4 5

1 2

1− 0

53

c = c *c
324342

c *c
31

=
51

c 5
2

5
3

3
2

c
*

c
=

c

c32

c
+

=
c

4
1

*c
4

3
3

1

c53

6 7

4 5

1 2

1− 0

3

c
43

c51

(a) (b) (c) (d) (e)

Fig. 1. Sequence of statements (a), corresponding sequence of elemental operations
enumerating the computed values (b), the corresponding G using the value enumeration
(c), eliminaton of vertex 3 from G (d), and front elimination of edge (1,3) from G (e).

gle intrinsic function or operator call. For each such computed value vi we can provide
the local partial derivative ci j = ∂vi/∂v j with respect to its arguments v j. For instance,
in Fig. 1(b) we have v4 = v1 ∗ v3 and therefore c41 = v3 and c43 = v1. These partial
derivatives are given as edge labels in G; see Fig. 1(c). Following Baur’s formula [10],
we can compute Jacobian entries by multiplying edge labels along paths from minimal
to maximal edges in G and adding parallel paths. Because of distributivity of the opera-
tions, the edge labels can be combined in many different orders yielding the same result
but differing in the number of multiplication (and addition) operations performed.
The multiplications and additions can be expressed as graph manipulations in G. Fig-
ure 1(d) shows a vertex elimination where the number of multiplications is equivalent
to the Markowitz degree, and Figure 1(e) shows a front-edge elimination where the
number of multiplications is equal to the number of out-edges of the target vertex; the
modified elements are shown in color. For details and additional operations see [7,11]
and [3], Sec. 3.2. Each elimination step modifies G to some G(k). One can proceed with
eliminations until the modified G has reached bipartite form Gb and the edge labels are
the entries of the Jacobian J of f evaluated at some point x0. This description illustrates
the basis of the following NP-complete [12] problem.

1. What is the minimal number of multiplications to reduce G to bipartite form?
The OpenAD representation1 of the problem is discussed in Sec. 2.1 followed by ex-
ample heuristics in Sec. 2.2.

1 OpenAD is actively being developed. All names of files, classes, methods, and variables men-
tioned here refer to versions xaifBooster: b88d9f62ae82+ , angel: ff7faed78ea6 of the respec-
tive Mercurial source code repositories (see [2]). Changes since then can be traced back by
using the Mercurial web interface at http://mercurial.mcs.anl.gov/ad .

http://mercurial.mcs.anl.gov/ad

Combinatorial Problems in OpenAD 3

In many practical applications one does not require the full J but only projec-
tions JS or WT J with S ∈ Rn×p,W ∈ Rm×p, where p is the number of desired direc-
tions. During the eliminations described above, the number of edges (with nonunit/non-
constant labels) at any intermediate stage G(k) often is smaller than that of the final
Gb. Consequently, the projection operations executed with G(k) are cheaper than
with Gb. The general concept is known as scarcity [13] and has been investigated for
practical use in [14]. Figure 2 shows an example for a rank-1 update. The initial G

z

(a) (b)

Fig. 2. Computational graph
(edges with constant labels are
green) for f(x) = (D + axT)x with
an intermediate variable z = xT x
in (a) and state after eliminating z
in (b).

has only 3n edges, of which 2n are constant. If
we eliminate the intermediate vertex z (see also
Fig. 1(d)), we have n2 nonconstant edges. Conse-
quently, the projections JS or WT J require only
3np operations compared to n2 p. This scenario
leads to the second combinatorial problem.

2. What is a minimal representation J∗ for J ?
In Sec. 2.3 we will explain the implementation
of a greedy heuristic to approximate the mini-
mal representation, with particular consideration
given to the additional savings possible when one
considers some edge labels to have unit value.

Because in OpenAD we have to build G at
compile time, the limitations of an automatic code
analysis2 to identify computed values (on the
left-hand side of an assignment) to their subsequent uses (in later right-hand-side-
expressions) also limit the scope of any single G typically to the contents of a basic
block. Thus, for an entire program P with control flow we have a sequence of s graphs
Gi and, corresponding to that, a sequence of s local Jacobians Ji. The overall Jacobian
J ∈ Rm×n for P is therefore a chained matrix product over the Ji. Again, instead of the
full Jacobian J we typically require the projections (Js ◦ . . . ◦ (J1 ◦ S) . . .), called the
forward mode, or (. . .(WT ◦ Js) ◦ . . . ◦ J1), called the reverse mode. Here we can also
use the J∗i in place of the less efficient Ji. The bracketing for the reverse mode indicates
that the Ji are required in an order inverse to the execution of the original program P.
Typically, because of memory limitations, one will not be able to compute and store
all the Ji at once to then use them for the reverse sweep. Instead one will have to trade
off some recomputation of the Ji from checkpoints. Determining the checkpoints and
orchestrating the computation of the Ji and their use in the reverse sweep is called a
reversal scheme. This leads to the third combinatorial problem, also shown to be NP-
complete [15].

3. Which reversal scheme achieves the fewest recomputations, given constraints on
the memory available for checkpoints and storing the Ji?
Section 3.1 highlights split and joint modes as two simple cases at the respective ends
of the spectrum controlled at the level of subroutine calls. Section 3.3 discusses the
optimal solution for the special case of uniform iterations.

2 This stems from aliasing, for example the possibility that two array elements a(i) and a(j)
or two pointers p and q point to the same address.

4 J. Utke, U. Naumann

2 Computational Graphs

The modular design of OpenAD separates different tasks of the source transformation.
The core AD transformation engine is a module called xaifBooster separate from the
modules for parsing, code analysis, and unparsing. An obvious candidate for the sepa-
ration within the AD transformation engine is the computation of the local Jacobians Ji
or J∗i , pertaining to problems 1 and 2. We rely on the object-oriented language features
of C++ to facilitate the module separation via interface classes.

2.1 Problem Representation

To experiment with elimination heuristics, we do not need to understand how G is
constructed from code or how exactly the elimination steps are translated back into
executable code. We need only an interface that describes the structure of G, the elimi-
nation steps, and (for problem 2) G∗, or remainder graph. The main interface is defined3

in the following file.
xaifBooster/algorithms/CrossCountryInterface/inc/Elimination.hpp

The structural representation of G is a class called LinearizedComputationalGraph,
or LCG. It uses vertex and edge classes LCGVertex and LCGEdge; their definitions can
be found in the same directory in header files with the respective names. This graph
class (like all other graph classes in xaifBooster) is based on the Boost Graph Library
[16]. An edge elimination step such as the front elimination of edge (1,3) shown in
Fig. 1(e) yields the following two (because vertex 3 has two outedges) fused multiply-
add operations: c41+=c43*c31 and c51=c53*c31. They are represented as instances of the
class JacobianAccumulationExpression, or JAE. Because we need only structural
information, the nonminimal vertices of a JAE represent the * or + operations, and the
minimal vertices have references either to edges of G or to maximal vertices of other
JAE that are earlier elimination results, such as the new edge (1,5) in Fig. 1(e). An
instance of JAEList and the remainder graph G∗ (which, like the input graph G, is
an instance of LCG) are the results of the top-level routine Elimination::eliminate
called from within xaifBooster.

Aside from the purely structural representation of G, the instances of LCGEdge con-
tain a discriminator to identify whether an edge label is ±1, constant, or generally vari-
able. This information is needed to solve the second problem. In the following we will
discuss elimination heuristics implemented by Angel [17,18].

2.2 Elimination Heuristics

The top-level driver routine for the heuristics is Elimination::eliminate() imple-
mented in angel/src/xaif interface.cpp. An Elimination instance is instantiated
from xaifBooster, and its attributes are set via oadDriver command line switches a,

3 We follow the convention used in the OpenAD manual [3], Sec. 2.2, by referencing all files
relative to the OpenAD install directory set as the $OPENADROOT environment variable. We
provide generated documentation of the source of all OpenAD components under the website’s
[2] “Documentation” link.

Combinatorial Problems in OpenAD 5

A, m, M, and R; see [3], Sec. 4.1.3.4. The attributes determine which specific elimination
routine is called by eliminate, for instance, compute elimination sequence().4

Markowitz-Based Heuristics Using Markowitz (triggered by setting -M 0) as an ex-
ample, we illustrate the implementation of a heuristic and identify in red the mini-
mal set of elements to be changed for a new heuristic. Angel internally uses plain
boost graphs. The first step in compute elimination sequence() is to convert the
LCG given as input via a call to read graph xaif booster. Then we declare a stack F
of heuristics that filters the elimination target vertices down to a single vertex. For exam-
ple, the first of three such F (for vertex elimination) is declared in xaif interface.cpp,
line 1151, as
typedef heuristic pair t<lowest markowitz vertex t>, reverse mode...> lm rm t;

and later, on line 1154, is defined as follows.
lm rm t lm rm v (lowest markowitz vertex, reverse mode vertex);

This filter stack internally first passes vertices with the lowest Markowitz degree and
then uses the reverse mode order as a tie breaker. The Markowitz filter and the re-

↓v1 ↓adg ↓op
best:=<some max value>
∀t ∈ v1 :

if op(t,adg) < best then
v2:= /0

if op(t,adg) ≤ best then
v2:=v2∪{t}

↓v2

↓adg ↓F (in the code h)

cost:=0; v1:=eliminatable(adg)
while v1 6= /0 :

v2:=F (v1,adg)
cost+=eliminate(v2,adg) /* adg is changed! */

seq+=v2
v1:=eliminatable(adg)
↓cost ↓seq

(a) (b)

Fig. 3. Pseudo code for standard heuristic op (a) and for use heuristic (b).

verse mode tie breaker are defined by using standard heuristic op and a function
object 5 called lmv op t, defined in angel/src/heuristics.cpp. Figure 3(a) shows
the pseudo code implemented in standard heuristic op taking in a vector of elim-
ination targets v1, a graph adg, and the aforementioned function object as a formal
parameter op. The core of the Markowitz heuristic is encapsulated in the function ob-
ject lmv op t’s operator(), which returns the expected product of in and out degree.

in degree(v,cg) * out degree(v,cg)
With this framework, the implementation of a new heuristic requires comparatively little
effort, and one has the remainder of OpenAD readily available to evaluate its efficacy.

Evaluating the Cost Now that we have described how a filter stack is implemented,
we return to compute elimination sequence() to look at the computation and com-
parison of the resulting cost. The above-mentioned three F together with simple for-
ward and reverse order are passed in a call to best heuristic (line 1169), which com-

4 We encourage using the “search” provided in the Angel and xaifBooster generated source
code documentation under “Documentation” at [2].

5 C++ classes with an operator().

6 J. Utke, U. Naumann

putes the elimination sequences and their respective cost individually and returns the
cheapest elimination sequence. The definition is found in heuristics impl.hpp. To
determine the cost of each of the five F individually, it calls use heuristic, defined
in heuristics.cpp; see also Fig. 3(b). It takes as input the graph G as adg and the fil-
ter and returns the cost and the elimination sequence seq. The filter F determines the
next elimination target, and the cost is accumulated as incurred by the actual elimina-
tion. For the latter, one can follow the calls from eliminate to vertex elimination
to back edge elimination to see that the cost is the number of edge label multiplica-
tions. Consequently a new heuristic for this cost model does not necessitate any further
changes.

Edge Eliminations Returning once more to compute elimination sequence(), we
also find a variety of edge elimination heuristic filters declared. The logic employed for
these is analogous to that applied to vertex eliminations. The cost, following the same
cost model used for vertex elimination, for the best edge elimination is compared to
that of the best vertex elimination. The winner is converted into an equivalent face
elimination [11] sequence. Because a face elimination can be considered the elemental
building block for all elimination operations, there is a common method to populate the
caller-provided instance of JAEList which expects a sequence of face eliminations as
input. An actual face elimination sequence and accompanying heuristics can be found
in compute elimination sequence lsa face.

2.3 Scarcity-Preserving Heuristics

To approximate a minimal representation J∗ of the Jacobian J (problem 2), OpenAD
has various scarcity-preserving heuristics [14]. We describe a simple example of such
a heuristic that is implemented in compute partial elimination sequence. Its ex-
ecution is triggered by the oadDriver command line settings -M 1 [-m]. While
the heuristics discussed in Sec. 2.2 minimize the count of elimination operations, the
cost here is simply the number of nonunit edge labels in the remainder graph G∗. Min-
imizing the elimination-induced operations count is a secondary concern. Given the
distinction of unit, constant, and variable edge labels in the LCGEdge class, we can dis-
regard the multiplication of constant edge labels from the elimination operations cost
because it is a compile time effort. All counters pertaining to the heuristic are kept in
an instance of elimSeq cost t that is defined in angel/include/angel types.hpp.
The pseudo code in Fig. 4 illustrates the core logic. Here, for simplicity, we consider
only edge elimination operations. Again we use a stack of filters to narrow the eligi-
ble targets down to a single edge. However, here we do so repeatedly because in each
elimination sequence we may detect a refill6 that in a subsequent elimination sequence
we attempt to avoid (line 09), thereby modifying the set v3 and arriving at different re-
sult. After each elimination is complete, we compare it to the current best result, where
elimSeq cost t holds all relevant counters, such as the minimal edge count reached
along the way, and the operations incurred. If no new refill dependence is detected,
we are done. The easiest entry point to change the behavior for a new heuristic is to

6 An edge (i, j) is refilled if it is eliminated but subsequently recreated as a consequence of
eliminating edges in an alternative path from i to j.

Combinatorial Problems in OpenAD 7

↓ourLCG (the graph G)

01‖best:=<default instance of elimSeq cost t>
02‖do
03‖ adg:=ourLCG; curr:=<default instance of elimSeq cost t>
04‖ do
05‖ v1:=eliminatable(adg) /* find eliminatable edges */

06‖ if v1 ≡ /0 then break /* this elimination is complete */

07‖ v2:=reducing edge eliminations(v1,adg) /* find edge count reductions */

08‖ if v2 ≡ /0 then v2 := v1 /* if such target edges don’t exist use the previous target set */

09‖ v3:=refill avoiding edge eliminations(v2,adg)
10‖ if v3 ≡ /0 then v3 := v2
11‖ v4:=lowestMarkowitzEdgeElim(v3,adg)
12‖ v5:=reverseModeEdgeElim(v4,adg)
13‖ curr.elims+=v5
14‖ curr.cost+=eliminate(v5,adg) /* modifies adg */

15‖ if (curr < best) then best:=curr
16‖ if (! curr.revealedNewDependence) then break /* checking for new refill dependencies*/

17‖/* code to extract partial elimination from ’best’ until J∗ and populate jae list and remainderLCG */

↓jae list ↓remainderLCG

Fig. 4. Pseudo code for compute partial elimination sequence

modify the filter stack at any of the red-marked lines 07–12. To finish, we need to create
G∗ by replaying the best elimination sequence to the first point when the minimal edge
count is reached. This also populates the instance of JAEList. Finally we populate the
caller-provided instance of LCG with the contents of the Angel internal G∗. The propa-
gation through the remainder graph is encapsulated entirely in xaifBooster as a code
generation step. Note that the heuristic logic inside reducing edge eliminations is
no longer as simple as, for instance, the Markowitz criterion because we need to pre-
compute the effect an elimination would have on the edge count considering different
combinations of unit/constant and variable edge labels. This precomputation is imple-
mented in edge elim effect. Other implementations of scarcity-preserving heuristics
can be found in compute partial transformation sequence which includes logic
to produce pre- and postrouting steps, and in the random variants of the above, which
include randomized choices and backtracking in heuristics rather than the simple greedy
algorithm explained here.

3 Reversal Schemes

Section 1 introduces reversal schemes as a means to obtain the Ji in reverse order,
potentially involving recomputation as a tradeoff for storage. In OpenAD the granularity
of choice for making this tradeoff is the subroutine call.

3.1 Simple Split and Joint Modes

For a given scope the two extreme ends of the tradeoff are called split mode and joint
mode. The former stores (or “tapes”) all Ji at once; the latter minimizes the storage for

8 J. Utke, U. Naumann

subroutine 1
call 2; ...
call 4; ...
call 2;
end subroutine 1

subroutine 2
call 3

end subroutine 2

subroutine 4
call 5
end subroutine 4

(a)

1

4

5

2 2

3 3

1

1 1

11 2

2

(b)

1

2 4 2

3533

4

3 5

1
1

2 2
1

1 1

1 2

2 2

2

1

1 1

11

(c)

call tree legend:

run forward (V1)

run forward and tape (V2)

run adjoint (V3)

store checkpoint (V4)

restore checkpoint (V6)

S
n n-th invocation of subroutine S order of execution subroutine call

Fig. 5. Example code (a), corresponding call tree (b), split mode (c), and legend.

the Ji and the checkpoints. A split mode example is shown in Fig. 5. The adjoint phase,
that is, the propagation (. . .(WT ◦Js)◦ . . .◦J1), is colored blue. The joint mode is char-
acterized by the fact that we store the Ji for each subroutine only immediately before
the corresponding adjoint sweep. A joint mode corresponding to Fig. 5(a) is shown
in Fig. 6 where the pairs of storing the Ji followed by the adjoint are colored green
and recomputations are framed in red. Both schemes exhibit a very regular structure

1 1

2 2

3 33

24

3 5 3 5

4 4

5 5

2 2

3 3

1 1

1 1

11

1 1

1 1 1

1

1

1

1 1

2

3

2

2 2 2

22

2

Fig. 6. Joint mode for Fig. 5(a).

in which each subroutine
executes one of five specific
variants (V1-V4,V6) gener-
ated by OpenAD.7 Rather
than the extremes, in prac-
tice a hybrid reversal scheme
is used, consisting in part of
the split mode for as large
a section of the model for
which the corresponding Ji

still fit into memory, while the higher-level parts use some checkpointing scheme and
the joint mode. Because this is an application-dependent problem, we do not directly
generate the entire reversal scheme in xaifBooster but rather use a template and a
postprocessing step to orchestrate the reversal.

3.2 Template Mechanism

An OpenAD template is best understood as a sample subroutine with some control
flow into which at predefined spots the postprocessor inserts the variants Vi. While the
xaifBooster transformation generates the Vi, the control structure together with some
static state information determines which version Vi at any invocation point in the
call tree is executed. As examples, the split and joint mode templates are shown in
Fig. 7(a) and (b), respectively; the control structure is shown in blue. The numbering
of the subroutine variants (V1-V4,V6) directly reflects the id number referenced in the

7 Other generated variants V5,V7 etc. are not of relevant for this paper.

Combinatorial Problems in OpenAD 9

1 subroutine template()
2 use OAD tape
3 use OAD rev
4 !$TEMPLATE PRAGMA DECLARATIONS
5 integer iaddr
6 external iaddr
7 if (our rev mode%plain) then
8 ! original function
9 !$PLACEHOLDER PRAGMA$ id=1

10 end if
11 if (our rev mode%tape) then
12 ! taping
13 !$PLACEHOLDER PRAGMA$ id=2
14 end if
15 if (our rev mode%adjoint) then
16 ! adjoint
17 !$PLACEHOLDER PRAGMA$ id=3
18 end if
19 end subroutine template

1 subroutine template()
2 use OAD tape
3 use OAD rev
4 use OAD cp
5 type(modeType) :: our orig mode
6 if (our rev mode%arg store) then
7 !$PLACEHOLDER PRAGMA$ id=4
8 end if
9 if (our rev mode%arg restore) then

10 !$PLACEHOLDER PRAGMA$ id=6
11 end if
12 if (our rev mode%plain) then
13 our orig mode=our rev mode
14 our rev mode%arg store=.FALSE.
15 !$PLACEHOLDER PRAGMA$ id=1
16 our rev mode=our orig mode
17 end if
19 call OAD revStorePlain
20 !$PLACEHOLDER PRAGMA$ id=2
21 call OAD revAdjoint
22 end if
23 if (our rev mode%adjoint) then
24 call OAD revRestoreTape
25 !$PLACEHOLDER PRAGMA$ id=3
26 call OAD revRestoreTape
27 end if
28 end subroutine template

(a) (b)

Fig. 7. Split mode template (a); joint mode template (b). The definitions of the OAD rev*
routines can be found in $OPENADROOT/runTimeSupport/simple/OAD rev.f90.

!$PLACEHOLDER PRAGMA$ (shown in red). The logic for the split mode is self-evident:
the driver for the program sets the global our rev mode and invokes the top-level model
routine once with our rev mode%tape and once with our rev mode%adjoint set to
true. The joint mode logic in the template is more complicated, but one can easily see
that the execution of each subroutine variant implies which variant should be executed
for its callees. The callee variant is set through calls to the respective OAD rev* routines
(shown in Fig. 7(b) in green); and by consulting the joint scheme figure, one can easily
verify the correctness of the template logic. In particular, we see that after storing the
Ji for the given subroutine (line 20) the mode is set to adjoint (line 21), which then
immediately follows (lines 23–27) as expected in the joint mode.

3.3 Reversal Scheme Using Revolve

In uniform time-stepping schemes one can assume that all checkpoints are of the same
size, as are the storage requirements to produce the Ji of a single timestep. This can
be used to derive an optimal reversal scheme [19] that minimizes the number of re-
computations for a given total s of timesteps and permitted number p of checkpoints.
Rather than a strict split or joint mode it indicates for each step, to the top-level time
step routine and all its callees, which of the respective variants Vi should be executed. A
Fortran version of optimal algorithm is available.8 Figure 8(a) shows an example loop

8 See http://mercurial.mcs.anl.gov/ad/RevolveF9X.

http://mercurial.mcs.anl.gov/ad/RevolveF9X

10 J. Utke, U. Naumann

1 subroutine loopBody(x)
2 double precision :: x
3 x=sin(x)
4 end subroutine

1 !$openad XXX Template ad revTempl.f
2 subroutine loopWrapper(x,s)
3 double precision :: x
4 integer :: s
5 !$openad INDEPENDENT(x)
6 do i=1,s
7 call loopBody(x)
8 end do
9 !$openad DEPENDENT(x)

10 end subroutine

1 program driver
2 use OAD active
3 use OAD tape
4 implicit none
5 external head
6 type(active) :: x
7 integer :: s
8 call oad tape init()
9 x%v=.5D0

10 x%d=1.0D0
11 write (∗,fmt=’(A)’,advance=’no’) &
12 ’number of iterations = ’
13 read (∗,∗) s
14 call loopWrapper(x,s)
15 print ∗, ’driver running for x =’,x%v
16 print ∗, ’ yields dy/dx =’,x%d
17 end program driver

1 subroutine template()
2 use OAD tape
3 use OAD rev
4 use OAD cp
5 use revolve
6 LOGICAL :: ini=.FALSE.
7 TYPE(rvAction) :: rvAct
8 CHARACTER , DIMENSION(80) :: errorMsg
9 integer :: p, curr=0

10 write (∗,fmt=’(a)’,advance=’no’) &
11 ’number of checkpoints = ’
12 read (∗,∗) p
13 ini=rvInit(s,p,errorMsg)
14 IF (.NOT.ini) WRITE(∗,’(A,A)’) &
15 ’Error: ’, errorMsg
16 do while (rvAct%actionFlag/=rvDone)
17 rvAct=rvNextAction()
18 select case (rvAct%actionFlag)
19 case (rvStore)
20 call cp write open(rvAct%iteration)
21 !$PLACEHOLDER PRAGMA$ id=4
22 call cp close
23 case (rvRestore)
24 call cp read open(rvAct%iteration)
25 !$PLACEHOLDER PRAGMA$ id=6
26 curr=rvAct%iteration
27 call cp close
28 case (rvForward)
29 call OAD revPlain
30 do curr=curr,rvAct%iteration−1
31 call loopBody(x)
32 end do
33 case (rvFirstUTurn,rvUTurn)
34 call OAD revTape
35 call loopBody(x)
36 call OAD revAdjoint
37 call loopBody(x)
38 end select
39 end do
40 end subroutine template

(a) (b)

Fig. 8. Time-stepping example loop in loopWrapper with the loop body encapsulated
in loopBody and a driver (a); ad revTempl.f to be applied to loopWrapper (b).

code with adjustments needed to apply OpenAD shown in brown; see also [3], Sec. 1.3.
Figure 8(b) shows the template to be applied to loopWrapper and used in conjunction
with revolve. The key ingredients of the template are the loop (line 16) replacing the
original time-stepping loop (line 6) in loopWrapper. All actions are determined by call-
ing rvNextAction (line 17). We distinguish storing and restoring checkpoints to file by
injecting the subroutine variants V4 (line 21) and V6 (line 25), respectively, computing
forward (lines 30–32) up to a step determined by revolve, and doing split adjoint com-
putation (lines 34–37) for rvFirstUTurn and rvUTurn. In the latter the loopBody is
directly injected (lines 35,37) because in the template in Fig. 8(b) we explicitly replace
the entire loop construct of loopWrapper (lines 6–8). Consequently, for the template
mechanism it is important to have the time-stepping loop separated in a wrapper, as
done in our example. While the above represents the solution to a very regular setup,
one can use the same idea to apply new heuristics in cases where the problem is

Combinatorial Problems in OpenAD 11

combinatorial, for example, when the timesteps (and therefore the associated storage
requirements) are not homogeneous. We note that the template mechanism as the entry
point to the overall reversal is well insulated from the remainder of the OpenAD tool
chain and provides an easy access to experiment with other reversal schemes.

Acknowledgements This work was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of Energy under Contract DE-
AC02-06CH11357.

References

1. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation. 2nd edn. Number 105 in Other Titles in Applied Mathematics. SIAM,
Philadelphia, PA (2008)

2. OpenAD website: downloads, manual, links.
http://www.mcs.anl.gov/openad

3. Utke, J., Naumann, U.: OpenAD/F: User Manual. Technical report, Argonne National Lab-
oratory (2009) latest version available online at
http://www.mcs.anl.gov/OpenAD/openad.pdf.

4. Bücker, H.M., Corliss, G.F., Hovland, P.D., Naumann, U., Norris, B., eds.: Automatic Dif-
ferentiation: Applications, Theory, and Implementations. Volume 50 of Lecture Notes in
Computational Science and Engineering. Springer, New York (2005)

5. Bischof, C.H., Bücker, H.M., Hovland, P.D., Naumann, U., Utke, J., eds.: Advances in
Automatic Differentiation. Volume 64 of Lecture Notes in Computational Science and Engi-
neering. Springer, Berlin (2008)

6. AD community website: news, tools collection, bibliography.
http://www.autodiff.org/

7. Hovland, P., Naumann, U., Walther, A.: Combinatorial problems in automatic differenti-
ation. In Naumann, U., Schenk, O., Simon, H., Toledo, S., eds.: Combinatorial Scientific
Computing. Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2009)

8. Naumann, U., Hu, Y.: Optimal vertex elimination in single-expression-use graphs. ACM
Transactions on Mathematical Software 35 (2008)

9. Utke, J.: Flattening basic blocks. [4] 121–133
10. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoretical Computer Science

22 (1983) 317–330
11. Naumann, U.: Optimal accumulation of Jacobian matrices by elimination methods on the

dual computational graph. Mathematical Programming, Ser. A 99 (2004) 399–421
12. Naumann, U.: Optimal Jacobian accumulation is NP-complete. Math. Prog. 112 (2006)

427–441
13. Griewank, A.: A mathematical view of automatic differentiation. In: Acta Numerica. Vol-

ume 12. Cambridge University Press (2003) 321–398
14. Lyons, A., Utke, J.: On the practical exploitation of scarsity. [5] 103–114
15. Naumann, U.: Call tree reversal is NP-complete. [5] 13–22
16. Boost C++ Libraries website: downloads, documentation, news.

http://www.autodiff.org/
17. AD nested graph elimination library (angel) website: downloads, overview.

http://angellib.sourceforge.net

http://www.mcs.anl.gov/openad
http://www.mcs.anl.gov/OpenAD/openad.pdf
http://www.autodiff.org/
http://www.autodiff.org/
http://angellib.sourceforge.net

12 J. Utke, U. Naumann

18. Naumann, U., Gottschling, P.: Simulated annealing for optimal pivot selection in Jacobian
accumulation. In Albrecht, A., Steinhöfel, K., eds.: Stochastic Algorithms: Foundations and
Applications. Volume 2827 of Lecture Notes in Computer Science., Springer (2003) 83–97

19. Griewank, A., Walther, A.: Algorithm 799: Revolve: An implementation of checkpoint for
the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathe-
matical Software 26 (2000) 19–45 Also appeared as Technical University of Dresden, Tech-
nical Report IOKOMO-04-1997.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (”Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf
of the Government.

	Combinatorial Problems in OpenAD
	Jean Utke and Uwe Naumann
	1 Introduction
	2 Computational Graphs
	2.1 Problem Representation
	2.2 Elimination Heuristics
	2.3 Scarcity-Preserving Heuristics

	3 Reversal Schemes
	3.1 Simple Split and Joint Modes
	3.2 Template Mechanism
	3.3 Reversal Scheme Using Revolve

